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Efficient Krylov-Subspace Simulation of
Autonomous RF/Microwave Circuits Driven by

Digitally Modulated Carriers
Vittorio Rizzoli, Fellow, IEEE, Alessandra Costanzo, Member, IEEE, and Franco Mastri

Abstract—The Letter presents a new approach to the simulation
of self-oscillating nonlinear circuits excited by modulated RF/mi-
crowave carriers and/or dc sources. The analysis is reduced to the
solution of a sequence of coupled harmonic-balance systems. A
Krylov-subspace method explicitly developed for autonomous cir-
cuits and the suppression of any time-domain integration provide a
dramatic speed increase with respect to conventional envelope-ori-
ented techniques.

Index Terms—Autonomous circuits and systems, envelope anal-
ysis, harmonic-balance analysis, modulators.

I. INTRODUCTION

T HE USE of hybrid time-frequency techniques is now well
established for the analysis of nonlinear microwave cir-

cuits forced by digitally modulated carriers [1][2]. With these
methods, baseband and microwave analysis are decoupled in
the sense that the former is carried out by time-domain inte-
gration of the signal modulation laws (or complex envelopes)
and the latter by performing a harmonic-balance (HB) analysis
at each envelope-sampling instant. This approach thus shares
some of the typical disadvantages of time-domain simulation.
In addition, in the case of autonomous circuits, continuation
with artificial embedding (usually implemented by introducing
in the circuit a fictitious RF source or probe) [3] is normally
used to solve the HB system. As a result, the analysis becomes
much slower than that of a completely forced circuit with the
same number of nonlinear devices, and the implementation of
Krylov-subspace techniques for dealing with large circuits [4]
becomes more difficult. This paper describes a Krylov-subspace
algorithm, allowing large self-oscillating (autonomous) RF/mi-
crowave circuits excited by modulated carriers to be analyzed
in the frequency domain by solving a sequence of modified HB
systems with no time-domain integration. The phase indetermi-
nacy of the oscillatory regime at each envelope sampling point
is removed by adding an auxiliary equation enforcing the rela-
tionship between instantaneous phase and frequency deviations.
In this way, most of the sophisticated computational algorithms
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that were previously developed for the nonautonomous case [5]
can be reused for autonomous circuits, with the same efficiency
in the exploitation of the available computer resources.

II. A NALYSIS OF AUTONOMOUS CIRCUITS UNDER

MODULATED RF DRIVE

The state variables (SV) of a modulated RF/microwave
regime take on the form

(1)

where the ( ) are RF/microwave fundamental an-
gular frequencies (carriers), andis an -vector of harmonic
numbers . The slowly time-dependent quantities are
the complex modulation laws or time-dependent harmonics. In
the forced case, the modulation laws are sampled at a number of
uniformly spaced time instants , called the
instants, and the are assumed as the problem unknowns.
The electrical regime may be described as a sequence of RF
pseudo-steady states to be determined by local HB analyses [5].
Such steady states are coupled through the envelope derivatives,
appearing both in the device and in the linear subnetwork equa-
tions. In turn, the envelope derivatives may be computed by
one-sided multipoint incremental rules of the form

(2)

with known coefficients [6]. By requiring that the linear and
nonlinear subnetwork equations be simultaneously satisfied at
each instant, we may generate a nonlinear solving system
of the form [5]

(3)

where are vectors of real and imaginary parts of the HB
errors at , and of the complex vector phasors , respec-
tively. If we denote by the number of positive intermodulation
products of interest, (3) may be viewed as a real system of

equations in as many unknowns (the entries
of ), with playing the role of parameter
( number of device ports). Such a system is modified with
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respect to an ordinary HB analysis because the unknowns ap-
pear in it both in the normal way and through the expressions
(2) of the envelope derivatives.

If one of the RF fundamentals, say , is autonomous, (1)
cannot be directly used in the solution process because HB anal-
ysis is unable to account for the relationship between instanta-
neous phase and frequency deviations. Indeed, in HB terms, at
each instant, the phase of the autonomous regime is inde-
terminate, and can be arbitrarily fixed. In order to circumvent
this difficulty, in (1) we explicitly put into evidence the phase
modulation law of a reference harmonic identified by the
harmonic vector with . (1) is thus replaced by

(4)

where is the value that the free fundamental takes on in
the absence of modulation. Note that the time-dependent har-
monics in (4) are denoted by and are related to the har-
monics used in the original representation (1) by

(5)

When (4) is adopted, by definition, the phase of the reference
harmonic must be held fixed to zero throughout the anal-
ysis. As in the forced case [5], we may now replace the slowly
modulated electrical regime (4) by an ordinary quasiperiodic
regime in the neighborhood of each instant . We assume
that the “best” local approximation to a slowly modulated sinu-
soid is represented by an ordinary sinusoid whose amplitude,
phase, and frequency coincide with the instantaneous ampli-
tude, phase, and frequency of the modulated signal evaluated
at the sampling instant of interest. In the neighborhood of,
(4) is thus replaced by

(6)

where is the instantaneous angular fre-
quency deviation of the reference harmonic. Note that the har-
monics of the local regime (6) coincide with the values that
the time-dependent harmonics of the original representation (1)
take on at . In order to solve the local HB system by
the Newton method for autonomous quasiperiodic regimes, the
phase of an arbitrary harmonic, say , must be fixed [7].
Since the phase of must be zero for any, according to
(5), the phase of should be set to , because by
definition . This phase value is unknown. However, by
integrating the frequency deviation from to we obtain

(7)

where the are coefficients of a constant-step integration for-
mula [6]. In order to correctly formulate the autonomous HB

problem, we retain the basic structure of the nonautonomous
system (3) and impose the phase constraint (7) by adding an
auxiliary equation. Assuming that the real and imaginary parts
of are the th and th entries of the real state vector ,
namely , , the HB solving system (3) is replaced by (8),
where the unknown fundamental frequency has been put into
evidence for convenience

(8)

Owing to the relationship (7) between and ,
for every (8), is a system of equations in as many
unknowns. For , we have ,
so that the unknowns are the entries of and . For

is held fixed, and the unknowns are the entries ofand
. The Jacobian matrix of (8) is

(9)

where is the Jacobian matrix of the forced system (3),
is a column vector of size , and is a row

matrix. When (9) is multiplied by a real vector of dimen-
sion , most of the CPU time is spent in the multiplication of

by the first entries of , which can be accomplished by
the efficient algorithms discussed in [4] for the nonautonomous
case. The overhead due to the additional equation appearing in
(8) with respect to (3) is negligible whenexceeds a few thou-
sand. This allows the use of Krylov-subspace techniques in con-
junction with the envelope-oriented analysis of autonomous cir-
cuits with essentially the same numerical performance already
demonstrated for completely forced circuits [5].

III. A PPLICATIONS

We consider a single-conversion transmitter front-end,
including a doubly-balanced quadrature mixer arranged in a
lower-sideband suppressing configuration, amplifiers, passive
coupling circuits, and several linear parasitics, for a total of

device ports and 1050 nodes. The LO signal is
sinusoidal with dBm available power at 790 MHz. IM
products of the LO and IF up to the 4th order are taken into
account, so that . The signal source connected to the
IF input is a VCO designed for a free-running fundamental
frequency of oscillation MHz and an output
power of 0 dBm when the modulating voltage is fixed to5 V.
The tuning sensitivity is about 300 kHz/V. We now assume that
a digital signal consisting of an NRZ periodic sequence of 512
b with a bit rate of 80 kb/s is superimposed on the quiescent

5 V bias applied to the modulating input of the VCO. Each
bit in the sequence is treated as a statistically independent
random variable that may take on the values0.2 V with
equal probabilities. The corresponding frequency deviation is

60 kHz. The transitions between the two logical levels follow
a raised-cosine waveform with 5%–95% rising and falling
times equal to 1/10th of the bit interval. In Fig. 1, the actual
signal spectrum at the front-end RF output is compared with
the theoretical spectrum of the binary CPFSK signal generated
by an ideal modulator fed by an infinite sequence of bits [8].
In Figs. 2 and 3, the instantaneous frequency deviation at the
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Fig. 1. Normalized spectrum of the front-end RF output signal compared with
the spectrum of an ideal binary CPFSK signal (f = frequency offset from the
carrier,T = bit interval).

Fig. 2. Instantaneous frequency deviation of the front-end RF output signal
compared with input modulating signal (80 kb/s). First 50 bits of a 512-bit
sequence.

front-end RF output is compared with the modulating signal
for two different bit rates (80 kb/s and 800 kb/s). The results
clearly show the degradation of the modulation law at high bit
rates. The analysis makes use of eight sampling points per bit,
so that the total number of nodal unknowns is 176 332 800 (over
175 million). The simulation requires about 80 seconds of CPU
time per instant, for a total of 327 680 s, and 387 MB of
memory on an SUN Enterprise 450. Note that at the time of this
writing Krylov-subspace HB analysis of autonomous circuits
was not supported by commercial software. In order to give a
clear feeling of the efficiency of the new analysis technique,
the simulation is repeated for the frequency modulator only,

Fig. 3. Instantaneous frequency deviation of the front-end RF output signal
compared with input modulating signal (800 kb/s). First 50 bits of a 512-bit
sequence.

i.e., with the VCO output port loaded by a 50resistor. In this
case, we have three device ports and 14 nodes, so that the total
number of nodal unknowns reduces to 516 096. The simulation
now requires about 0.1 s of CPU time per instant, for a
total of 408 seconds. This is about nine times faster than a
typical envelope-oriented technique based on the probe method
for autonomous circuit analysis [3].
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